Contest Design with Interim Types

Matthew W. Thomas
January 4, 2024

Federal Trade Commission

The views expressed in this article are those of the author and do not necessarily reflect those of the Federal Trade Commission or any individual Commissioner

Introduction

What if principal cannot discriminate

Contestants often differ in ability

- Heterogeneity reduces competitiveness and total effort
- Discrimination in favor of weaker player can correct for heterogeneity
- This requires information about player types

What if principal has this information but cannot discriminate

Known types without discrimination is design with interim types

All-knowing designer under anonymity still has interim type distribution

- Knowledge of interim type distribution is powerful
- Boring full-surplus extracting revelation mechanism:
- Principal asks for types
- Reported types do not match interim distribution \Longrightarrow collective punishment
- Extract all surplus
- Argument assumes unlimited liability

Design with interim types and efficiency (type of limited liability)

Revenue from two-player contests

Related literature

"Structural" contest design"

- Ewerhart (2017), Franke, Leininger, et al. (2018), and Nti (2004)

Revenue dominance in anonymous, efficient contests

- Epstein et al. (2013), Fang (2002), and Franke, Kanzow, et al. (2014)

[^0]Model

Model (1): Setup

- Complete information, two-player ${ }^{2}$ contest with unit prize
- Each player submits score $s_{i} \geq 0$ at linear cost $k_{i}>0$ s.t. $k_{2}>k_{1}$
- Principal chooses contest success functions (CSFs) to max expected revenue

$$
p_{i}\left(s_{i}, s_{-i}\right) \in[0,1]
$$

- Solution concept is revenue-maximizing Nash equilibrium

Normalize $k_{1}=1$ and $k_{2}=k>1$ and call k heterogeneity

[^1]
Model (2): Timing

Timing of game is:

1. Types (k_{1}, k_{2}) are common knowledge ${ }^{3}$
2. Principal chooses CSFs and announces them to the players
3. Players submit scores $\left(s_{1}, s_{2}\right)$ simultaneously
4. Player i receives payoff:

$$
u_{i}\left(s_{i} ; s_{-i}\right)=p_{i}\left(s_{i}, s_{-i}\right)-k_{i} s_{i}
$$

${ }^{3}$ We restrict principal's use of information so knowledge of distribution is sufficient

Model (3): Restrictions

Two restrictions on principal's CSF:
Definition (Anonymous)
$p_{1}(x, y)=p_{2}(x, y)$ for all $x, y \geq 0$.
Definition (Efficient)
$p_{1}(x, y)+p_{2}(y, x)=1$ for all $x, y \geq 0$.

Results

Full surplus extraction with anonymity or efficiency alone

Note: full surplus is one which requires $s_{1}=1$ and $s_{2}=0$
If not efficient,

- Principal sets reserve score of 1

If not anonymous,

- Principal allocates to Player 2 unless $s_{1} \geq 1$

No full surplus extraction with anonymity and efficiency

No anonymous, efficient CSF can extract full surplus

- Both players must have payoff zero and $s_{1}=1, s_{2}=0$
- Player 1 has profitable deviation because $p(0,0)=0.5$

Yet to demonstrate one cannot get arbitrarily close to full surplus extraction ${ }^{4}$

[^2]
When heterogenity low, optimal is APA with bid caps

If $k \leq 2$, optimal anonymous, efficient contest

- Implementable using all-pay auction with bid cap at $\frac{1}{2 k}$

$$
p(x, y)= \begin{cases}1 & \text { if } \frac{1}{2 k} \geq x>y \text { or } y>\frac{1}{2 k} \\ \frac{1}{2} & \text { if } x=y \\ 0 & \text { if } \frac{1}{2 k} \geq y>x \text { or } x>\frac{1}{2 k}\end{cases}
$$

- Both players score $\frac{1}{2 k}$ and split prize

Optimal to extract effort from both players because heterogeneity is low

When heterogenity high, optimal is difference form

If $k \geq 2$, optimal anonymous, efficient contest

- Implementable using difference-form contest

$$
p(x, y)= \begin{cases}1 & \text { if } x-y>\frac{1}{2} \\ \frac{1}{2}+x-y & \text { if } x-y \in\left[-\frac{1}{2}, \frac{1}{2}\right] \\ 0 & \text { if } x-y<-\frac{1}{2}\end{cases}
$$

- Player 1 scores $\frac{1}{2}$ and Player 2 scores zero

Not worth extracting effort from Player 2 because heterogeneity is high

Two Contests that Maximize Revenue

More players

Only interesting with one fewer prizes than players

If $m<n-1$ prizes:

- Request $\frac{1-\epsilon}{k_{i}}$ effort from players 1 to m for $1-\epsilon$ of prize
- Request $\frac{m \epsilon}{k_{m+1}}$ from Player $m+1$ for $m \epsilon$ of prize
- At least one player has no prize
- If player imitates another, give both prizes to players with unique scores

Arbitrarily close to full surplus extraction

Three players and two prizes has all interesting attributes of n players

Optimal anonymous, efficient mechanism obtains revenue

$$
\begin{cases}\frac{1}{2 k_{1}}+\frac{1}{2 k_{2}} & \text { if } \frac{k_{3}}{k_{2}} \geq 3 \\ \frac{1}{2 k_{1}}+\frac{3}{2 k_{3}} & \text { if } \frac{k_{3}}{k_{2}} \leq 3 \leq \frac{k_{3}}{k_{1}} \\ \frac{3}{k_{3}} & \text { if } \frac{k_{3}}{k_{1}} \leq 3 \text { and } \frac{k_{3}}{k_{2}} \geq 2 \\ \frac{1}{k_{1}}+\frac{3-k_{3} / k_{1}}{2 k_{2}} & \text { if } \frac{k_{3}}{k_{1}} \leq 3 \leq \frac{k_{2}+k_{3}}{k_{1}} \text { and } \frac{k_{3}}{k_{2}} \leq 2 \\ \frac{6-\frac{k_{2}+k_{3}}{k_{1}}}{2 k_{1}} & \text { if } \frac{k_{2}+k_{3}}{k_{1}} \leq 3 \text { and } \frac{k_{3}}{k_{2}} \leq 2\end{cases}
$$

Similar to the two player case, no prize for Player 3

Three players and two prizes has all interesting attributes of n players

Optimal anonymous, efficient mechanism obtains revenue

$$
\begin{cases}\frac{1}{2 k_{1}}+\frac{1}{2 k_{2}} & \text { if } \frac{k_{3}}{k_{2}} \geq 3 \\ \frac{1}{2 k_{1}}+\frac{3}{2 k_{3}} & \text { if } \frac{k_{3}}{k_{2}} \leq 3 \leq \frac{k_{3}}{k_{1}} \\ \frac{3}{k_{3}} & \text { if } \frac{K_{3}}{k_{1}} \leq 3 \text { and } \frac{k_{3}}{k_{2}} \geq 2 \\ \frac{1}{k_{1}}+\frac{3-k_{3} / k_{1}}{2 k_{1}} & \text { if } \frac{k_{3}}{k_{1}} \leq 3 \leq \frac{k_{2}+k_{3}}{k_{1}} \text { and } \frac{k_{3}}{k_{2}} \leq 2 \\ \frac{6-\frac{k_{2}+k_{3}}{k_{1}}}{2 k_{1}} & \text { if } \frac{k_{2}+k_{3}}{k_{1}} \leq 3 \text { and } \frac{k_{3}}{k_{2}} \leq 2\end{cases}
$$

Similar to the two player case, split one prize between Player 2 and Player 3

Three players and two prizes has all interesting attributes of n players

Optimal anonymous, efficient mechanism obtains revenue

$$
\begin{cases}\frac{1}{2 k_{1}}+\frac{1}{2 k_{2}} & \text { if } \frac{k_{3}}{k_{2}} \geq 3 \\ \frac{1}{2 k_{1}}+\frac{3}{2 k_{3}} & \text { if } \frac{k_{3}}{k_{2}} \leq 3 \leq \frac{k_{3}}{k_{1}} \\ \frac{3}{k_{3}} & \text { if } \frac{K_{3}}{k_{1}} \leq 3 \text { and } \frac{k_{3}}{k_{2}} \geq 2 \\ \frac{1}{k_{1}}+\frac{3-k_{3} / k_{1}}{2 k_{1}} & \text { if } \frac{k_{3}}{k_{1}} \leq 3 \leq \frac{k_{2}+k_{3}}{k_{1}} \text { and } \frac{k_{3}}{k_{2}} \leq 2 \\ \frac{6-\frac{k_{2}+k_{3}}{k_{1}}}{2 k_{1}} & \text { if } \frac{k_{2}+k_{3}}{k_{1}} \leq 3 \text { and } \frac{k_{3}}{k_{2}} \leq 2\end{cases}
$$

Give half of Player 1 and Player 2's prize to Player 3

Three players and two prizes has all interesting attributes of n players

Optimal anonymous, efficient mechanism obtains revenue

$$
\begin{cases}\frac{1}{2 k_{1}}+\frac{1}{2 k_{2}} & \text { if } \frac{k_{3}}{k_{2}} \geq 3 \\ \frac{1}{2 k_{1}}+\frac{3}{2 k_{3}} & \text { if } \frac{k_{3}}{k_{2}} \leq 3 \leq \frac{k_{3}}{k_{1}} \\ \frac{3}{k_{3}} & \text { if } \frac{k_{3}}{k_{1}} \leq 3 \text { and } \frac{k_{3}}{k_{2}} \geq 2 \\ \frac{1}{k_{1}}+\frac{3-k_{3}-k_{1}}{2 k_{1}} & \text { if } \frac{k_{3}}{k_{1}} \leq 3 \leq \frac{k_{2}+k_{3}}{k_{1}} \text { and } \frac{k_{3}}{k_{2}} \leq 2 \\ \frac{6-\frac{k_{2}+k_{3}}{k_{1}}}{2 k_{1}} & \text { if } \frac{k_{2}+k_{3}}{k_{1}} \leq 3 \text { and } \frac{k_{3}}{k_{2}} \leq 2\end{cases}
$$

IR binding for Player 2, transfer half Player 2's prize and some of Player 3's

Three players and two prizes has all interesting attributes of n players

Optimal anonymous, efficient mechanism obtains revenue

$$
\begin{cases}\frac{1}{2 k_{1}}+\frac{1}{2 k_{2}} & \text { if } \frac{k_{3}}{k_{2}} \geq 3 \\ \frac{1}{2 k_{1}}+\frac{3}{2 k_{3}} & \text { if } \frac{k_{3}}{k_{2}} \leq 3 \leq \frac{k_{3}}{k_{1}} \\ \frac{3}{k_{3}} & \text { if } \frac{k_{3}}{k_{1}} \leq 3 \text { and } \frac{k_{3}}{k_{2}} \geq 2 \\ \frac{1}{k_{1}}+\frac{3-k_{3} / k_{1}}{2 k_{1}} & \text { if } \frac{k_{3}}{k_{1}} \leq 3 \leq \frac{k_{2}+k_{3}}{k_{1}} \text { and } \frac{k_{3}}{k_{2}} \leq 2 \\ \frac{6-\frac{k_{2}+k_{3}}{k_{1}}}{2 k_{1}} & \text { if } \frac{k_{2}+k_{3}}{k_{1}} \leq 3 \text { and } \frac{k_{3}}{k_{2}} \leq 2\end{cases}
$$

IR binding for everyone, transfer some of players 1 and 2's prize to Player 3

Revenue from three-player contests $\left(k_{1}=5 / 6\right.$ and $\left.k_{2}=1\right)$

Scores from three-player contests ($k_{1}=5 / 6$ and $k_{2}=1$)

Thank You!

References

E－Epstein，Gil S，Yosef Mealem，and Shmuel Nitzan（2013）．＂Lotteries vs．All－Pay Auctions in Fair and Biased Contests＂．In：Economics \＆Politics 25，pp．48－60．
固 Ewerhart，Christian（2017）．＂Revenue ranking of optimally biased contests：The case of two players＂．In：Economics Letters 157，pp．167－170．
固 Fang，Hanming（2002）．＂Lottery versus All－Pay Auction Models of Lobbying＂．In： Public Choice 112，pp．351－71．
－Franke，Jörg，Christian Kanzow，et al．（2014）．＂Lottery versus all－pay auction contests：A revenue dominance theorem＂．In：Games and Economic Behavior 83， pp．116－126．
（ Franke，Jörg，Wolfgang Leininger，and Cédric Wasser（2018）．＂Optimal favoritism in all－pay auctions and lottery contests＂．In：European Economic Review 104， pp．22－37．
Realem，Yosef and Shmuel Nitzan（2016）．＂Discrimination in contests：a survey＂．In：Review of Economic Design 20，pp．145－172．
國 Nti，Kofi O（2004）．＂Maximum efforts in contests with asymmetric valuations＂． In：European journal of political economy 20，pp．1059－1066．

Appendix

[^0]: ${ }^{1}$ This is a large literature. See Mealem and Nitzan (2016) for a review.

[^1]: ${ }^{2}$ Extend to n players later

[^2]: ${ }^{4}$ In fact, with $n>2$ players and $m<n-1$ prizes, principal can get arbitrarily close

